Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu Gao, Wuxin Zou, Wanxuan Zhang, Jinshui Li and Jiben Meng*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
mengjiben@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.046$
$w R$ factor $=0.123$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3-\{3,3-Dimethylspiro[2,3-dihydro-1H-indole-2,3'-(3'H-naphtho[2,1-b][1,4]-oxazin)]-1-yl\}propionic acid

The title compound, $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$, is dimerized via two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds contributed by two -COOH groups, resulting in the formation of a planar eight-membered ring. The spiro C atom links two planes that are almost perpendicular to each other.

Comment

Spiro-oxazines are novel organic photochromic compounds that are attractive as functional materials for a wide variety of applications, including high-density optical storage devices, optical switches and non-linear optics (Swansburg et al., 2000). Recently, the title compound, (I), was found to exhibit interesting photochemical properties when applied to DNA modifications (Zhang et al., 2001). Thus, the elucidation of the crystal structure of (I) is of importance. To our knowledge, this is the first reported crystal structure determination of a photochromic compound dimerized via intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

(I)

The spiro-center, C12, in (I) (Fig. 1 and Table 1) is tetrahedral, as expected, with the dihedral angle between the planes $\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 11$ and $\mathrm{N} 2-\mathrm{C} 12-\mathrm{C} 13$ being 89.71 (13) . The five-membered indoline ring ($\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19-$ N 2) is non-planar, adopting a flattened envelope conformation. Atom C12 lies 0.476 (3) Å out of the plane of the other four indoline ring atoms; the torsion angle $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19-$ N 2 is $-1.5(3)^{\circ}$ and the bending angle along the $\mathrm{N} 2 \cdots \mathrm{C} 13$ line is $30.59(12)^{\circ} . \mathrm{N} 2, \mathrm{C} 13$ and the phenyl ring atoms are close to being coplanar [the interplanar angle between the phenyl ring and the plane through $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19-\mathrm{N} 2$ is only $\left.1.82(13)^{\circ}\right]$. Atom N2 has a pyramidal configuration and lies out of the plane of the adjacent atoms by 0.2451 (21) \AA; the sum of the bond angles at N 2 is $351.3(5)^{\circ}$. As found for the indoline ring, the oxazine moiety also has an envelope conformation, with C12 0.334 (3) \AA from the plane of the other oxazine atoms. The naphthyl ring, along with $\mathrm{N} 1, \mathrm{C} 11$ and O1, constitutes a roughly planar moiety, with a maximum deviation of 0.084 (18) \AA at C 11 ; the dihedral angle between this plane and $\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 1$ is $23.83(14)^{\circ}$, indicating that spiro-atom C12 lies out of the naphthyl ring system.

Received 9 December 2002 Accepted 23 December 2002 Online 17 January 2003

Figure 1
A view of dimerized (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The main feature of the crystal structure is the dimerization in the crystalline state (Fig. 1), which occurs when two molecules approach in a head-to-head fashion with the formation of a centrosymmetric eight-membered ring via hydrogen bonding of the carboxyl groups (Table 2). Osano et al. (1991) reported a similar structure with a methoxy group insead of a carboxyl groups, in which no dimerization was observed.

Experimental

The title compound was synthesized as described by Li et al. (1999). The single crystal was grown by slow evaporation of a chloroformethanol solution at room temperature.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=386.44$
Monoclinic, $P 2_{1} / n$
$a=13.373$ (5) A
$b=11.527$ (4) A
$c=13.485$ (5) \AA
$\beta=111.538$ (6) ${ }^{\circ}$
$V=1933.5(11) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.328 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 912 \\
& \quad \text { reflections } \\
& \theta=3.2-23.4^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, pale yellow } \\
& 0.20 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.984, T_{\text {max }}=0.991$
7838 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.123$
$S=1.02$
3399 reflections
263 parameters
H -atom parameters constrained

> 3399 independent reflections 2000 reflections with $I>2 \sigma(I)$
> $R_{\mathrm{int}}=0.047$
> $\theta_{\max }=25.0^{\circ}$
> $h=-15 \rightarrow 14$
> $k=-13 \rightarrow 8$
> $l=-14 \rightarrow 16$

[^0]Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-C12	1.456 (2)	C11-N1	1.276 (3)
N2-C19	1.402 (3)	C11-C12	1.507 (3)
N2-C12	1.437 (3)	$\mathrm{O} 2-\mathrm{H} 2$	0.8501
N2-C20	1.456 (3)	C12-C13	1.567 (3)
C10-O1-C12	118.28 (16)	O1-C12-C11	109.50 (17)
C19-N2-C12	108.43 (17)	N2-C12-C13	102.79 (17)
C19-N2-C20	120.52 (18)	O1-C12-C13	108.95 (17)
C12-N2-C20	122.35 (17)	C11-C12-C13	115.17 (18)
N1-C11-C12	126.9 (2)	C14-C13-C12	100.35 (17)
$\mathrm{C} 22-\mathrm{O} 2-\mathrm{H} 2$	110.9	C19-C14-C13	108.98 (19)
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{N} 1$	121.05 (19)	C14-C19-N2	109.64 (19)
C1-C10-O1	121.6 (2)	$\mathrm{O} 3-\mathrm{C} 22-\mathrm{O} 2$	123.7 (2)
C11-N1-C1	116.49 (19)	O3-C22-C21	122.2 (2)
N2-C12-O1	107.60 (16)	$\mathrm{O} 2-\mathrm{C} 22-\mathrm{C} 21$	114.2 (2)
N2-C12-C11	112.42 (18)		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 10-\mathrm{O} 1$	1.7 (3)	N1-C11-C12-N2	141.5 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{O} 1$	178.4 (2)	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 1$	22.0 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	-175.6 (2)	N1-C11-C12-C13	-101.2 (3)
C12-O1-C10-C1	18.9 (3)	N2-C12-C13-C14	-29.1 (2)
C12-O1-C10-C9	-163.61 (19)	O1-C12-C13-C14	84.81 (19)
C12-C11-N1-C1	-3.7 (3)	C11-C12-C13-C14	-151.73 (18)
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$	-9.5 (3)	C12-C13-C14-C19	19.1 (2)
C19-N2-C12-O1	-84.6 (2)	C13-C14-C19-C18	177.22 (19)
C19-N2-C12-C11	154.78 (18)	C15-C14-C19-N2	-179.3 (2)
C19-N2-C12-C13	30.3 (2)	C13-C14-C19-N2	-1.5 (3)
$\mathrm{C} 10-\mathrm{O} 1-\mathrm{C} 12-\mathrm{N} 2$	-150.52 (18)	C12-N2-C19-C18	162.2 (2)
C10-O1-C12-C11	-28.1 (2)	C12-N2-C19-C14	-19.1 (2)
C10-O1-C12-C13	98.7 (2)		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.85	1.78	$2.632(3)$	178
Symmetry code: (i) $2-x,-y,-z$.				

H atoms were located geometrically and included in the structurefactor calculations.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China for financial support (grant Nos. 20072018 and 29832030).

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SAINT (Version 4.0) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Li, X. L., Wang, Y. M., Matsuura, T. \& Meng, J. B. (1999). Heterocycles, 51, 2639.

Osano, Y. T., Mitsuhashi, K., Maeda, S. \& Matsuzaki, T. (1991). Acta Cryst. C47, 2137-2141.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

organic papers

Swansburg, S., Buncel, E. \& Lemieux, R. P. (2000). J. Am. Chem. Soc. 122, 6594-6600.

Zhang, P., Pang, M. L., Meng, J. B., Matsuura, T. \& Wang, Y. M. (2001). Chem. J. Chin. Univ. 22, 81-82. (In Chinese.)

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0562 P)^{2}\right]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3}$
 $\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.0055 (11)

